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An NMR rotation operator disentanglement strategy for
establishing properties of the Euler–Rodrigues parameters
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Abstract. A disentanglement of the rotation operator introduced by Santiago and Vaidya is
used to prove the composition rule for the Euler–Rodrigues parameters in a representation-
independent manner. It is also shown that one of the Santiago and Vaidya disentangling
coefficients embodies the Darboux transformation of differential geometry, which is equivalent
to stereographic projection of the Bloch sphere onto the complex plane.

Stuelpnagel (1964) has shown that no three-dimensional parametrization of the rotation
groupSO(3) can be both globaland non-singular. In the case of the Euler angles(α, β, γ ),
for example, this leads to well known singularities for defining a rotation (Hughes 1986),
and in the Euler angle kinematic equations (Evans 1977). Not only that, the Euler angle
kinematic equations arenonlinear. At the price of one redundant parameter, the four-
dimensional Euler–Rodrigues (ER) parametrization offers, by comparison, a number of
important advantages. Expressed in terms of the rotation axis,n̂, and the rotation angle,
8, the ER parameters{λ,Λ} ≡ {cos82 , n̂ sin 8

2 } are theonly parameters for which the
group multiplication rule can be given in closed form (Altmann 1986) as a simple bilinear
composition (vide infra). They are also the representation of smallest dimension which has
such a bilinear composition rule, and consequently alinear kinematic equation (Shuster
1993, Stuelpnagel 1964).

Some years ago, Santiago and Vaidya (1976) showed how the matrix elements
of the rotation operator could be evaluated in an extremely simple manner by using
Baker–Campbell–Hausdorff (BCH) formulae for the exponentials of the generators of
the SU(2) group. For the case of a rotation axis/rotation angle{8, n̂} parametrization
of the rotation operatorD = exp[−i8n̂ · I], their disentanglement ofD as
D = exp[A+I+] exp[ln(A0)I0] exp[A−I−] introducedc-number disentangling coefficients
{A+(8, n̂), A0(8, n̂), A−(8, n̂)} which considerably simplified the evaluation of the
required matrix elementsD(I )mn(8, n̂). However, it appears to have been overlooked that
if thesec-number disentangling coefficients are expressed in terms of the ER parameters
{λ,Λ} as {A+(λ,Λ), A0(λ,Λ), A−(λ,Λ)}, then the particular disentanglement technique
employed by Santiago and Vaidya (1976) also provides a direct and simple route for
establishing several important properties of the ER parameters. These properties include
their composition rule, as we show in this comment, and their kinematic relations, as
shown previously (Siminovitch 1995). The simplicity and linearity of these ER parameter
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relations have been used to some advantage in spin kinematics (Counsellet al 1985, Barbara
1986) and spacecraft attitude kinematics (Hughes 1986, Shuster 1993). Due to their simple
composition rule, the ER parameters continue to play an increasingly important role in
NMR, where composing rotations are indispensable in pulse sequence design (Levitt 1986),
and in calculating the response to multipulse sequences (Barbara 1994, Luet al 1996).

In the context of NMR, the present comment has two purposes. First, we take advantage
of the Santiago and Vaidya (1976) disentanglement procedure to establish the ER parameter
composition rule in a representation-independent manner. We believe that this provides the
first quantum mechanical argument to establish the validity of the ER parameter composition
rule for spins of arbitrary magnitude,I , without choosing a representation. Secondly, we
note that the expression for thec-number coefficientA+ ≡ A+(λ,Λ) in the Santiago
and Vaidya (1976) disentanglement of the quantum mechanical rotation operator embodies
transformations of two sets of coupled equations of motion. Both sets, one the Euler
kinematical relations (Zhouet al 1993, 1994), and the other the Bloch equations, provide
a classical description of spin kinematics. One of these transformations is the Darboux
(1887) transformation of differential geometry (Eisenhart 1960, Melzak 1976) transforming
the Frenet–Serret equations into the Riccati equation. Since the Frenet–Serret equations are
formally identical to the Bloch equations in NMR (Lamb 1971), in a classical description of
magnetization vector trajectories in NMR, the Darboux (1887) transformation is equivalent
to stereographic projection of the Bloch sphere onto the complex plane (Corio 1966). The
other is a transformation introduced by Zhouet al (1994), transforming the Euler kinematic
equations of rigid body dynamics into the Riccati equation.

Using the ER parameters, a composition rule for theSO(3) rotation matricesR(λ,Λ)
can be defined. The compounding formula of Counsellet al (1985) for the product of two
such consecutive three-dimensional rotations applied to a spin system takes the following
standard form (rotation through an angle81 aboutn̂1 followed by rotation through an angle
82 aboutn̂2):

R1(λ1,Λ1)R2(λ2,Λ2) = R(λ,Λ) (1)

where

λ = λ1λ2−Λ1 ·Λ2 (2)

λi = cos

(
8i

2

)
(i = 1, 2) (3)

Λi = n̂i sin

(
8i

2

)
(i = 1, 2) (4)

Λ = λ2Λ1+ λ1Λ2−Λ1×Λ2. (5)

This formula, originating from rigid body kinematics (Rodrigues 1840, Favro 1960, Altmann
1986), can be used for calculating the response to spin-1

2 composite pulses (Counsellet
al 1985, Barbara 1994) as well as phase-alternating spin-1 composite pulses (Barbara
1986). From a classical point of view, the first purelygeometricalapproach to obtaining
the resultant ER parameters{λ,Λ} for two consecutive rotations was taken by Rodrigues
(1840), using the ER construction, and spherical trigonometry. An alternative geometrical
derivation has recently been given by Sivardière (1994), based on the decomposition of a
rotation into two reflections (Coxeter 1946, Misneret al 1973, Altmann 1986). Such a
decomposition can be used to account for the presence ofhalf-angles in the composition
rule. An entirely different classical approach relies on the relationship between rotations and
homographies (Cayley 1879, Biedenharn and Louck 1981). Under stereographic projection
of the Bloch sphere onto the complex plane, rotations of points on the sphere correspond
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to homographic transformationsz → z′ of the complex plane. By parametrizing each
homographic transformation via the ER parameters{λ,Λ} as

z′ = (λ+ i3z)z − (3y − i3x)

(3y + i3x)z + (λ− i3z)
(6)

a composition of two such homographies may also be used to obtain the ER parameter
composition rule of equations (2)–(5) (Cayley 1879, Klein 1884).

Quantum mechanical proofs of this composition rule using the rotation axis/rotation
angle {8, n̂} parametrization of the rotation operator have always relied on the spin-1

2
representation of the rotation group (Harter and dos Santos 1978, Counsellet al 1985). Since
the composition rule relates only the angles and axes of the rotations, both of which are
independent of the representation, a choice of the spin-1

2 representation is clearly sufficient
(Counsell et al 1985). By the same token, it should not be necessary to chooseany
representation, which we now demonstrate by establishing the ER parameter composition
rule of equations (2)–(5) in a representation-independent manner.

For this purpose, consider a set of operatorsK± ≡ Kx± iKy andK0 ≡ Kz which satisfy
the usual commutation relations for the generators of theSU(2) Lie algebra:

[K−,K+] = −2K0 (7)

[K0,K±] = ±K±. (8)

Then the following normal-order decomposition formula for an exponential function of these
generators can be derived (Santiago and Vaidya 1976, Truax 1985, Cheng and Fung 1988,
Ban 1993):

exp[a+K+ + a0K0+ a−K−] = exp[A+K+] exp[ln(A0)K0] exp[A−K−] (9)

where

A± = (a±/f ) sinhf

coshf − (a0/2f ) sinhf
(10)

A0 = [coshf − (a0/2f ) sinhf ]−2 (11)

f = [(a0/2)
2+ a−a+]1/2. (12)

In order to generalize the decomposition formula of equation (9), the ordered productG(n)

of the exponential functions of the generators of the Lie algebra can be defined as follows
(Ban 1993):

G(n) =
n∏
k=1

exp[a+(k)K+ + a0(k)K0+ a−(k)K−] (13)

where
n∏
k=1

g(k) = g(n)g(n− 1) . . . g(2)g(1). (14)

Using this notation, for arbitraryc-number functions{a±} and{a0}, Ban (1993) has derived
the following normal-order BCH formula for the ordered productG(n):

G(n) =
n∏
k=1

exp[a+(k)K+ + a0(k)K0+ a−(k)K−]

= exp[A+(n)K+] exp[ln(A0(n))K0] exp[A−(n)K−]. (15)
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The c-number functions{A±} and {A0} are defined by Ban (1993) in terms of recursion
formulae, of which the following formula forA+(n) will suffice for the purpose of
illustration:

A+(n) = (a+/f (n)) sinhf (n)+ {coshf (n)+ (a0/2f (n)) sinhf (n)}A+(n− 1)

coshf (n)− (a0/2f (n)) sinhf (n)+ (a−/f (n)) sinhf (n)A+(n− 1)
(16)

where

A+(0) = 0 (17)

f (n) = [(a0(n)/2)
2+ a−(n)a+(n)]1/2. (18)

The above formulae (equations (15)–(18)) for the ordered productG(n) are not based
on geometrical considerations, instead they were obtained by Ban (1993) by using induction
and parameter differentiation (Wilcox 1967), and the commutation relations of equations (7)
and (8). For a rotation first performed about then̂1 axis through the81 angle, followed by
a second rotation about thên2 axis through the82 angle, the operatorD of the resultant
rotation can be expressed in terms of an ordered product,P, of rotation operators as

D ≡ exp[−i8n̂ · I] = exp[−i82n̂2 · I] exp[−i81n̂1 · I] ≡ P . (19)

We now use the generalized BCH formula of equation (15) to show that the ER parameters
{λ,Λ} of the resultant rotation can be expressed in terms of the ER parameters{λi,Λi} of
the two consecutive rotations by the composition rule of equations (2)–(5). For this purpose,
using the fact that the axis of rotation,n̂, is

n̂ = (sinθ cosφ, sinθ sinφ, cosθ) (20)

the operator argument−i8n̂ · I of the rotation operator can be expressed in the notation
of Ban (1993) as (Santiago and Vaidya 1976)

−i8n̂ · I ≡ −i8(nxIx + nyIy + nzIz) = a+I+ + a0I0+ a−I− (21)

where

a± = −i8 sinθ
e∓iφ

2
(22)

a0 = −i8 cosθ. (23)

Using these expressions for thec-number functions{a±} and {a0}, f of equation (12) is
evaluated as (Santiago and Vaidya 1976)

f = ±i
8

2
(24)

so that thec-number functions{A±} and {A0} of equations (10) and (11) are defined in
terms of the ER parameters{λ,Λ} ≡ {cos82 , n̂ sin 8

2 } as

A± = −i
n∓ sin 8

2[
cos82 + nz sin 8

2

] ≡ −i
(3x ∓3y)

λ+ i3z

(25)

A0 =
[

cos
8

2
+ nz sin

8

2

]−2

≡ [λ+ i3z]
−2 (26)

where

n∓ = nx ∓ iny. (27)
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Using the notation of the generalized decomposition formula of equation (15), the ordered
product,P, of rotation operators on the RHS of equation (19) can be written as

P = exp[a+(2)I+ + a0(2)I0+ a−(2)I−] exp[a+(1)I+ + a0(1)I0+ a−(1)I−] (28)

= exp[A+(2)I+] exp[ln(A0(2))I0] exp[A−(2)I−]. (29)

Using the recursion formula forA+(n) given in equation (16), we find

A+(2) = −i(32x − i32y)+ (λ2− i32z)A+(1)
(λ2+ i32z)− i(32x + i32y)A+(1)

(30)

where

A+(1) = −i
(31x − i31y)

(λ1+ i31z)
. (31)

From equation (19), we must haveA+ = A+(2), so that from equations (25) and (30)

−i
(3x − i3y)

λ+ i3z

= −i(32x − i32y)(λ1+ i31z)+ (λ2− i32z)(−i)(31x − i31y)

(λ2+ i32z)(λ1+ i31z)+ (−i)(32x + i32y)(−i)(31x − i31y)
(32)

or equivalently

3y + i3x

λ+ i3z

= {[λ231y + λ132y +31x32z −31z32x ]

+i[λ231x + λ132x +31z32y −31y32z]}
×{[λ1λ2−31x32x −31y32y −31z32z]

+i[λ231z + λ132z +31y32x −31x32y ]}−1. (33)

From a classical point of view, the composition of the two homographies corresponding
to the rotations in the rotation operator product of equation (19) yields the following two
equations (Cayley 1879, Klein 1884):

3y + i3x = [λ231y + λ132y +31x32z −31z32x ]

+i[λ231x + λ132x +31z32y −31y32z] (34)

λ+ i3z = [λ1λ2−31x32x −31y32y −31z32z]

+i[λ231z + λ132z +31y32x −31x32y ]. (35)

The quotient of these two equations is equation (33), and so we have recovered via the
Santiago and Vaidya (1976) disentanglement procedure a relation which could have been
obtained classically via stereographic projection. We return below to another connection
between this disentanglement procedure and stereographic projection.

By using the relations of equation (33) and those obtained via the recursion relations for
A−(n) andA0(n), as well as the fact that all the ER parameter sets{λ,Λ} define quaternions
of unit norm (see equation (58) below), we find

λ = ±{λ1λ2−31x32x −31y32y −31z32z} (36)

= ±{λ1λ2−Λ1 ·Λ2} (37)

3x = ±{λ231x + λ132x +31z32y −31y32z} (38)

= ±{λ2Λ1+ λ1Λ2− (Λ1×Λ2)}x (39)

3y = ±{λ231y + λ132y +31x32z −31z32x} (40)

= ±{λ2Λ1+ λ1Λ2− (Λ1×Λ2)}y (41)

3z = ±{λ231z + λ132z +31y32x −31x32y} (42)

= ±{λ2Λ1+ λ1Λ2− (Λ1×Λ2)}z. (43)
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In terms of the resultant ER parameters{λ,Λ}, equation (37) corresponds to that part of the
ER parameter composition rule which definesλ (equation (2)), while equations (39), (41)
and (43) are the respectivex, y andz components of thevector equation definingΛ in the
composition rule (equation (5)).

When commenting on this result, it should be noted that the proof itself dependsonly
on the fact that the spin angular momentum operators,Ii , satisfy the commutation relations
of equations (7) and (8) for the generators of theSU(2) Lie algebra, andnot on the
spin magnitude,I , which is arbitrary. By establishing this result via the rotation operator
in a representation-independent manner, we not only re-emphasize the spin-independent
character of the ER composition rule, but we also avoid any pitfalls associated with
choosing a particular representation. For example, by relying on the spin-1

2 algebra to
establish Hamilton’s equivalent of the ER composition rule, Harter and dos Santos (1978)
have misleadingly attributed theone-half in the half-angles of the composition rule to the
〈Iz〉 = 1

2 value of angular momentum! In fact, this belies the fact that half-angles are an
essential featureof the parametrization of rotations (Altmann 1986), as first demonstrated by
Rodrigues (1840). The geometrical reason whyhalf-angles appear in the composition rule
is because a rotation through an angle,θ , about a given axiŝn is equivalent to successive
reflections in two planes that meet along this axis at the half-angleθ/2 (Coxeter 1946,
Misner et al 1973, Altmann 1986).

In the rotation operator approach (Popov 1959, Zhouet al 1993) for the description of
spin dynamics in a time-varying magnetic field, the rotation operators may be parametrized
in terms of the Euler anglesα, β, γ (Zhou et al 1994), or in terms of the angle of rotation,
8, about an axiŝn (Siminovitch 1995). The corresponding rotation operators for each of
these parametrizations are expressed as

D(α(t), β(t), γ (t)) = exp[iγ (t)Iz] exp[iβ(t)Iy ] exp[iα(t)Iz] (44)

D(8, n̂) = exp[i8n̂ · I] (45)

using thepassiveconvention (Bouten 1969), or as

D(α(t), β(t), γ (t)) = exp[−iα(t)Iz] exp[−iβ(t)Iy ] exp[−iγ (t)Iz] (46)

D(8, n̂) = exp[−i8n̂ · I] (47)

using theactive convention (Bouten 1969). By introducing the transformation

h = − tan
β

2
exp(iγ ) (48)

Zhouet al (1994) showed that theEuler kinematical relationscould be transformed into the
Riccati equation for the variableh. The Riccati equation has played an extremely important
role in NMR, reducing the integration of thethree coupled first-order equations in the
Bloch equations to asingle first-order equation (Corio 1966). A further transformation
of the Riccati equation to a linear second-order differential equation leads to a solution
including the effects of radiation damping (Barbara 1992), and to exact analytical solutions
for a small class of non-rectangular pulse shapes, including the hyberbolic secant pulse
(Allen and Eberly 1975) and the exponentially shaped pulse (Campolieti and Sanctuary
1989, Keniry and Sanctuary 1990). These are the only other analytical solutions known
besides that for a simple rectangular pulse.

On the other hand, substitution of the disentangled rotation operator,D(8, n̂), into the
Schr̈odinger equation leadsdirectly to the Riccati equation for the disentangling coefficient
A+ (Popov 1959, Cheng and Fung 1988)

Ȧ+ = a1
′ + a2

′A+ − a3
′A2
+ (49)
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whereaj ′ ≡ −iaj , and the coefficientsaj define the HamiltonianH(t) = −h̄{a1(t)I+ +
a2(t)I0 + a3(t)I−}. Therefore, by using the explicit form of the Santiago and Vaidya
(1976) disentangling coefficientA+(λ,Λ) for the rotation operator in the passive convention
used by Zhouet al (1994), and relations between the ER parameters{λ,Λ} and the Euler
angles(α, β, γ ), the transformation of equation (48) is directly and simply obtained by the
conversion ofA+ ≡ A+(λ,Λ) to A+ ≡ A+(α, β, γ ) as follows:

A+ = i(31− i32)

λ− i33
= sin β

2 exp(−i(α − γ )/2)
cosβ2 exp(−i(α + γ )/2) = tan

β

2
exp(iγ ). (50)

(The change in sign between equation (48) and equation (50) is due to the difference between
the Riccati equation of equation (49), and that used by Zhouet al (1994).) Similarly,
consider the conversion ofA+ ≡ A+(λ,Λ) for the active form of the rotation operator
to A+ ≡ A+(Mx,My,Mz). By using the homomorphism betweenSO(3) andSU(2), the
ER parametrization of the Rabi rotation matrixR(λ,Λ) ∈ SO(3) may be obtained from
U(λ,Λ) ∈ SU(2) as

R(λ,Λ) =
 λ2+32

x −32
y −32

z 2(3x3y − λ3z) 2(3z3x + λ3y)

2(3x3y + λ3z) λ2−32
x +32

y −32
z 2(3y3z − λ3x)

2(3z3x − λ3y) 2(3y3z + λ3x) λ2−32
x −32

y +32
z

 (51)

where

U(λ,Λ) =
[

λ− i3z −(3y + i3x)

(3y − i3x) λ+ i3z

]
. (52)

The components of magnetizationM (T ) ≡ (Mx,My,Mz) at the end of a radiofrequency
pulse of durationT can then be expressed in terms of the initial componentsM (0) and the
elements ofR(λ,Λ) as

M (T ) = RM (0). (53)

Given typical initial conditionsM (0) = (0, 0, 1) in NMR, the magnetization components
can then be expressed in terms of the Rabi rotation matrix elements as

(Mx,My,Mz) = (R13,R23,R33). (54)

By using the explicit form ofR(λ,Λ) given in equation (51), we find

Mx = 2(3x3z + λ3y) (55)

My = 2(3y3z − λ3x) (56)

Mz = λ2+32
z − (32

x +32
y). (57)

These relations, together with the normalization condition

λ2+Λ2 ≡ λ2+32
x +32

y +32
z = 1 (58)

may be used in the conversion ofA+ ≡ A+(λ,Λ) to A+ ≡ A+(Mx,My,Mz). We find

A+ = −i
(3x − i3y)

λ+ i3z

= − 1−Mz

Mx + iMy

= − 1

σ
(59)

where σ is the parameter introduced by Darboux (1887) to transform the Frenet–Serret
equations into the Riccati equation. By noting the analogy between the Frenet–Serret
equations of differential geometry, and the Bloch equations in the absence of relaxation
or radiation damping, Lamb (1971) introduced the analogue of the Darboux parameter,
thereby reducing the Bloch equations into a single first-order Ricatti equation.
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Starting with two of the classical descriptions of spin kinematics, one in the form of
the Euler kinematical relations (Zhouet al 1993, 1994), and the other in the form of the
more commonly used Bloch equations, a suitable transformation must be found in each
case in order to reduce a set of coupled equations to a single first-order Riccati equation.
Alternatively, as shown above, either of these transformations may be determined simply
by re-expressing the Santiago and Vaidya (1976) disentangling coefficientA+(λ,Λ) as
A+(α, β, γ ), or asA+(Mx,My,Mz), respectively.
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